
Adapting Ray Tracing to Spatial
Augmented Reality

Markus Broecker
Wearable Computer Lab
University of South Australia
markus.broecker@unisa.edu.au

Bruce H. Thomas
Wearable Computer Lab
University of South Australia
bruce.thomas@unisa.edu.au

Ross T. Smith
Wearable Computer Lab
University of South Australia
ross.t.smith@unisa.edu.au

Figure 1: Non-augmented props and view-dependent ray
tracing using a Spatial AR system.

Copyright is held by the author/owner(s).
ISMAR 2013, October 1 – 4, 2013, Adelaide, Australia.
ACM 978-1-XXXX-XXXX-X/XX/XX.

Abstract
Ray tracing is an elegant and intuitive image generation
method. The introduction of GPU-accelerated ray tracing
and corresponding software frameworks makes this
rendering technique a viable option for Augmented Reality
applications. Spatial Augmented Reality employs
projectors to illuminate physical models and is used in
fields that require photorealism, such as design and
prototyping. Ray tracing can be used to great effect in
this Augmented Reality environment to create scenes of
high visual fidelity. However, the peculiarities of SAR
systems require that core ray tracing algorithms be
adapted to this new rendering environment. This paper
highlights the problems involved in using ray tracing in a
SAR environment and provides solutions to overcome
them. In particular, the following issues are addressed: ray
generation, hybrid rendering and view-dependent
rendering.

Author Keywords
Ray tracing, Augmented Reality, Spatial AR

ACM Classification Keywords
H.5.1 [Multimedia Information Systems]: Artificial,
augmented and virtual realities; I.3.7 [Computer Graphics]:
Raytracing,colour, shading, shadowing and texture



Introduction
Ray tracing is an image generation method that enables
the creation of high-quality computer generated images.
Its recursive nature naturally allows for complex graphics
effects, such as shadows and reflections [3, 9]. The
shading of a fragment in ray tracing can take into account
the whole scene thus allowing the implementation of
global illumination methods as well as realistic reflections,
refractions or shadows. These methods are possible in
rasterisation but require complex multi-step algorithms to
achieve a similar result.

Ray tracing offers other advantages over rasterisation as
well. Firstly, ray tracing allows for a richer set of arbitrary
data input and output operations and complex shading
methods. Secondly, it is able to perform physically-based
rendering; thirdly, it offers very high quality images
compared to rasterised graphics – as an example, path
tracing [4] methods are often used to create reference
images to which other graphics algorithms are compared.

Until recently, ray tracing in Augmented Reality (AR) was
not a viable option, as it is a slower image generation
method compared to hardware accelerated rasterisation.
One fundamental requirement of AR graphics is that it
has to be capable of real-time, interactive performance [1].
The advent of GPGPU1 and supporting software, such as
CUDA2 and OptiX [7], allows the use of powerful,
programmable and parallel-processing capable graphics
cards to accelerate ray tracing to real-time frame rates.

Spatial Augmented Reality (SAR) is a specialised form of
AR which uses projectors as the primary display device [2].
Physical models (called props, usually painted white) are

1General-purpose computing on the GPU.
2nvidia.com/object/cuda

illuminated by these projectors, allowing the system to
simulate different surface properties (see the left and right
images in Figure 1). The image on the left of Figure 1
depicts examples of SAR props lit in environment light
while the right image shows the same props simulating a
reflecting metallic surface. SAR offers an intuitive
approach to AR, without requiring the user to wear a
head-mounted display or hold a hand-held device. As
users do not have to handle the display device, the SAR
approach scales well to a group of users [6], compared to
traditional see-through AR methods. It also offers
affordance with the physical presence of props, further
increasing the realism and perception of the virtual display.

In this paper we present a set of ray tracing algorithms
designed to operate under SAR conditions. SAR systems
have numerous peculiarities that can result in image
artefacts and, in the worst case, wrong images, if these
ray tracing algorithms are implemented näıvely. In
particular, three core techniques are the focus of this
work. First, ray generation based on arbitrary matrices
will be investigated. Secondly, hybrid rendering allowing
the combination rasterisation and ray tracing will be
presented. Finally, view-dependent rendering techniques,
based on modification of first-order intersection results are
described.

Ray Generation
Each projector in a SAR system is defined by a projection
and a view matrix, which are calculated by an external
calibration program based on camera-pose estimation.
These matrices are approximations of projection
parameters (calculated using camera pose estimation) and
are not created from direct measurements of the
projection parameters. Figure 2 shows two projection
matrices for rasterised graphics pipelines.

Ms =


d
a 0 0 0
0 d 0 0

0 0 n+f
n−f

2nf
n−f

0 0 −1 0



Mo =


2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 n+f
n−f

2nf
n−f

0 0 −1 0



Figure 2: Projection matrices.



Matrix Ms is the symmetric frustum projection matrix, as
it is commonly used and created by many to standard
library functions3. Matrix Mo shows a more general,
oblique projection matrix [8] that defines an asymmetrical
frustum. Intrinsic parameters, which describe projection
parameters such as focal length, can be recovered from
projection matrices. These values can be used to generate
primary rays in ray tracing; however, in the case of SAR,
they must only be interpreted as approximations. Errors in
the recovery of these parameters will cause the resulting
image to diverge from the rasterised OpenGL image
created by the rest of the system. Even small numerical
errors are multiplied by long projection distances. For
example, the projectors employed in our system have a
resolution of 1280× 800, which yields an image
width-to-height ration of 1.6. Parameter recovery
calculated the aspect ratio for two projectors with
individual calibrations as 1.59 and 1.61.Projectors have a fixed reso-

lution. Local resolution de-
scribes the actual resolution of
a projector on a given surface
area of the projection surface.
Distance between projector and
surface as well as the relative
shape and angle of the surface
to the projector influence the lo-
cal resolution.

Our solution to create rays in the projector’s frustum is to
calculate the frustum’s eight defining corner vertices in
world-space. Once calculated, the primary rays can be
created through bilinear interpolation of the frustum’s
near and far plane. The frustum is calculated in
world-space by the transformation pipeline used in
rasterisation graphics (see Equations 1 – 3). The eight
coordinates of the clip-space cube (pclip) are transformed
by the inverted projector matrix (M−1projector). Mprojector

maps points from world- to clip-space, so the inverse
transformation M−1projector maps from clip to world space.
The transformed coordinates need to be divided by the
respective homogenous coordinates (Equation 3) after
transformation. p′world describes the eight corner vertices
of the frustum in world coordinates.

3For example by calling gluPerspective.

Mprojector = Mproj · Pview, (1)

pworld = M−1projector · pclip, (2)

pclip ∈ (


1
1
1
1

 ,


−1
1
1
1

 ,


1
−1
1
1

 · · ·),
p′world = pworld/pworld.w. (3)

Figure 3 shows the interpolated points on the frustum’s
near and far plane. A ray R is defined by creating a start
point X and end point Y on the frustum’s near and far
planes.

Near

Far

X

Y
R

World

C

D

near.topleft

near.bottomleft

near.topright

near.bottomright

Figure 3: A projector’s frustum in world coordinates.

The low local resolution of projectors illuminating props
results in very noticeable projection artefacts due to
high-frequency texturing (as well as reflections and
refractions, as seen in Figure 4). Multi-sampling
techniques are therefore required to provide higher image
quality (see Figure 5). Jittered grid multi-sampling was
chosen for our implementation. Random numbers,
required for multi-sampling, are generated on the fly on
the GPU using a pseudo random number generator with a
small common state buffer.

Figure 4: Strong aliasing due to
low local resolution and spread of
secondary rays.

Figure 5: Multi-sampling is
required in a SAR system and
improves display quality.



Hybrid Rendering
In our specific case, we wanted to integrate the ray tracer
into an existing rasterisation based SAR system. The
output of the ray tracer should therefore combine correctly
– that is, provide correct occlusion – with existing
graphics, whether they are rendered before or after the ray
tracing step. Hybrid rendering, in our case, refers to
combining rasterisation and ray tracing to generate
images, not accelerating ray tracing using rasterisation.

Ray tracing implicitly provides the linear intersection
length along its rays. However, the depth buffer
commonly used in rasterisation graphics is not linear, but
follows a 1

z curve. Linear depth coordinates from the ray
tracer must be converted to the non-linear depth buffer
space so that the hardware is able to resolve occlusions
correctly between ray tracing and rasterisation graphics.

One solution is to calculate the new depth coordinates in
a fragment shader, while the screen-filling quad with the
ray tracing result is written to the back buffer. The
algorithm starts with determining the world position of
the current intersection. To do so, we perform the same
ray casting in the fragment shader for each fragment, as
described for the ray generation process. Each projector
frustum’s parameters are stored in a read-only buffer
which is passed to the shader and the linear distance along
each ray is stored in the alpha channel of the texture.

Figure 6: An example of hybrid
rendering. Notice the correct
occlusion of spheres and physical
bunny and the missing reflection
of the bunny in the mirror.

Calculating the depth follows the standard rasterisation
pipeline after the world position of the intersection point
has been calculated. The point in world coordinates gets
transformed into normalised device coordinates by the
projector’s transformation matrices and the depth divide.
Clipping need not be performed, as all points for
transformation are known to be in the current projector’s
field of view. The last step transforms the normalised

device coordinates into window coordinates – that is, the
depth values are scaled to lie in [0 · · · 1]. The z value of
the transformed vertex is written to the depth buffer for
each fragment while the stored ray traced colour value is
written to the back buffer. The following equations show
the steps for this algorithm:

pworld = rayorigin + raydirection · distance, (4)

pclip = Pproj · Pview · pworld, (5)

pNDC = pclip/pclip.w, (6)

z = pNDC .z ∗ 0.5 + 0.5. (7)

Figure 6 shows the correct occlusion results between
multiple ray traced and a rasterised object. Notice that
only geometry that is ray traced (in this case the spheres
and the ground) will be reflected and reflect other ray
traced geometry – rasterised geometry (the physical
Stanford bunny) is absent in the ray traced reflection.

Multisampling averages all pixel samples in one pixel –
including the linear depth. This leads to incorrect depth
results, especially along the edges of an object, where
some rays within that pixel miss the object and have a
distinctly larger intersection depth than the other rays
which hit the object. To enable correct blending, we only
use the closest intersection distance of all sample rays,
which we store as the depth value.

View-dependent Rendering
A SAR system has no inherent knowledge of the position
of the viewer. During rendering, each projector becomes
the current active viewer and renders the world from its
position. However, many effects, such as specular
highlights, reflections or refractions, require knowledge of



the user’s view position. This creates a class of techniques
called ‘view-dependent rendering’, in which the user’s
viewpoint is tracked and rendering takes this new
information into account.

Figure 7: The scene from
Whitted’s ray tracing paper
reimplemented in SAR.

Primary order rays and inter-
sections are cast from the pro-
jector and intersect an object.
They create secondary rays and
intersections through reflective
or transparent materials.

Recursive ray tracing enabled a direct implementation of
view-dependent rendering. Ray intersections can create
new rays, changing their direction and position depending
on material properties and the user’s position. Reflections
can be calculated accurately instead of relying on texture
effects. This allows for view-dependent effects on
geometry of any shape, avoids the problems of aliasing
and employs the recursive nature of the ray tracer
efficiently. Figure 7 shows a reimplementation of the
scene found in Whitted’s ray tracing paper [9]. The
sphere in the background shows reflection of near
geometry (through ray tracing) and far geometry (through
environment mapping). The sphere in the foreground
shows refraction.

It is important to differentiate between primary and
secondary rays in view-dependent rendering techniques.
Primary rays are cast from the projector into the scene
and primary hits describe intersections of these rays with
the geometry of the scene. Secondary rays are created by
reflecting or refracting primary or secondary rays on the
objects, at the point of intersection and based on material
properties (for example, reflectivity or fresnel number).

V

P1
P2

n

S

p2

p'2

p'1

p1

v'

Figure 8: Two projectors – P1

and P2 illuminate a prop S with
the surface normal n. The
viewing positions V must be
taken into account when creating
secondary rays to create the
correct reflection or refraction.

Figure 8 highlights the difference between primary and
secondary rays when using ray tracing in SAR. Two
projectors P1 and P2 illuminate a physical prop S at a
single pixel with the normal n at that point. A tracked
viewer V is observing the scene. When implementing
reflections without regard to the viewing position, the
primary rays p1 and p2 are reflected at the normal to
create the secondary rays p1

′ and p2
′ respectively.

However, it yields the wrong reflection result for the
viewer V . This effect is exacerbated when multiple
projectors are illuminating the same pixel and casting
different reflection rays on that point. If, however, the
secondary ray is created by reflecting the incoming view
vector, the correct result is achieved – independent of any
projector’s position.

Conclusion
This paper describes ray tracing in the context of SAR.
Projector calibration in SAR provides us with view and
projection matrices through pose estimation.
Decomposing these matrices to calculate intrinsic
parameters might lead to incorrect projections. We
therefore implemented ray casting based on the frustum’s
shape that these matrices describe. This results in images
that have the same geometric transformations as the
rasterisation pipeline describes; thus, we can combine ray
traced and rasterised images. To enable correct occlusion
results, the linear intersection distance along a ray has to
be converted to non-linear z-buffer space. The previously
calculated matrices were used to assist, and this was
implemented in a shader and each fragment’s depth is
processed while the ray tracing result is written to the
screen.

One of the key differences between ray tracing with a
traditional display and in the SAR context is the clear
distinction between primary and secondary rays. In
traditional ray tracers, no distinction needs to be made;
however, SAR requires this for the calculation of
reflections, refractions and also miss rays. Primary rays
are always cast from the projector in SAR and are used to
create initial intersections. Secondary rays include further
intersections and reflections.



Finally, we note that with the available software libraries
and interfaces for ray tracing on the GPU, the entry
barrier to implement efficient, specialised ray tracing is
low: the available computing power in modern graphics
cards enables ray tracing in real-time.

There are many different uses for ray tracing in a SAR
environment. High-quality simulation of surface materials
(for example, car paint) in a design-oriented SAR
application is one use case, which is also independently
researched by other authors [5]. Simulation of
participating media (for example, liquids) and rendering of
volume data sets is another. Finally, some CAD models
represented by freeform surfaces, such as NURBS, can be
evaluated directly using ray tracing without triangulation.
This would allow a more direct workflow in a design
application of SAR.

Acknowledgements
We would like to acknowledge the work of Michael Marner
in our SAR software and hardware infrastructure. We
would also like to thank members of our Wearable
Computer Lab, Erin Zimmerman and Sandra Bennett for
proof-reading the paper.

References
[1] Azuma, R. T. A Survey of Augmented Reality.

Presence 6 (August 1997), 355–385.
[2] Bimber, O., and Raskar, R. Spatial Augmented

Reality - Merging Real and Virtual Worlds. A K
Peters, Ltd., 2005.

[3] Cook, R., Porter, T., and Carpenter, L. Distributed
ray tracing. In ACM SIGGRAPH Computer Graphics,
vol. 18, ACM (1984), 137–145.

[4] Lafortune, E. P., and Willems, Y. D. Bi-directional
path tracing. In Proceedings of CompuGraphics,
vol. 93 (1993), 145–153.

[5] Menk, C., Jundt, E., and Koch, R. Visualisation
techniques for using spatial augmented reality in the
design process of a car. Comput. Graph. Forum 30, 8
(2011), 2354–2366.

[6] Mine, M., van Baar, J., Grundhofer, A., Rose, D., and
Yang, B. Projection-based augmented reality in disney
theme parks. Computer 45, 7 (july 2012), 32 –40.

[7] Parker, S., Bigler, J., Dietrich, A., Friedrich, H.,
Hoberock, J., Luebke, D., McAllister, D., McGuire,
M., Morley, K., Robison, A., et al. Optix: A general
purpose ray tracing engine. ACM Transactions on
Graphics (TOG) 29, 4 (2010), 66.

[8] Verth, J. V., and Bishop, L. Essential Mathematics for
Games and Interactive Applications: A Programmer’s
Guide. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2004.

[9] Whitted, T. An improved illumination model for
shaded display. Communications of the ACM 23, 6
(1980), 343–349.


	Introduction
	Ray Generation
	Hybrid Rendering
	View-dependent Rendering
	Conclusion
	Acknowledgements
	References

